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Abstract—Automatic segmentation of medical images, such
as computed tomography (CT) or magnetic resonance imaging
(MRI), plays an essential role in efficient clinical diagnosis. While
deep learning have gained popularity in academia and industry,
more works have to be done to improve the performance for
clinical practice. U-Net architecture, along with Dice coefficient
optimization, has shown its effectiveness in medical image seg-
mentation. Although it is an efficient measurement of the differ-
ence between the ground truth and the network’s output, the Dice
loss struggles to train with samples that do not contain targeted
objects. While the situation is unusual in standard datasets, it
is commonly seen in clinical data, where many training data
available without the anomalies shown in the images, such as
lesions and anatomic structures in some CTs/regions. In this
paper, we propose a novel loss function - Stochastic Aggregated
Dice Coefficient (SA Dice) and a modification of the network
structure to improve its performance. Experimentally, in our
own heart aorta CT dataset, our models beats the baseline by
4% in cross-validation Dice scores. In BRATS 2017 brain tumor
segmentation challenge, the models also perform better than the
state-of-the-art by approximately 2%.

Index Terms—U-Net, CT, MRI, Dice, Segmentation, Stochastic
Aggregated Loss

I. INTRODUCTION

Imaging technologies, such as computed tomography (CT)
or magnetic resonance imaging (MRI), are non-invasive meth-
ods for screening and diagnosis that have transformed the
medical industry. As a result, automatic medical image seg-
mentation become an important research topic. Fast and ac-
curate segmentation helps physicians make more efficient and
effective decisions in diagnosis and treatment plan. Therefore,
there is an increasing demand for machine learning based
tools capable of performing precise segmentation of medical
images. However, problems specific to healthcare have limited
the development of such automation technologies. For exam-
ple, collecting and curating data is difficult and expensive as
most of clinical data are not annotated, or only a small number
of data are annotated. Manual labeling is tedious, exhaustive
and requires professional skills to perform, especially for
segmentation task. For diseased cases, the data can be scarce
due to the limited number of patients available in an individual
hospital.
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Recent studies on convolutional neural networks and deep
learning [1] have shown tremendous success in medical image
segmentation [2]–[5]. U-Net architecture, first proposed in
[2], has demonstrated outstanding effectiveness in medical
images. Since then, multiple works have been done to solve
various segmentation tasks based on U-Net. In addition, Dice
coefficient [6] has also become a standard for many opti-
mization strategies for medical image segmentation [3]–[5],
instead of pixel-wise cross entropy. Dice-based loss functions
are particularly robust to class imbalance and shown very
successful [3], [5], but they find examples without targets
challenging because of gradient flatness problem that we will
discuss later in section III-B.

This paper, based on U-Net models [3], [5], presents a solu-
tion to the aforementioned problem by proposing a novel yet
simple loss function - Stochastic Aggregated Dice Coefficient
(SA Dice) (section III-C). It also introduces Weighted Multi-
resolution Loss Component Accumulation (WMLA) (section
III-D) to achieve better performance. We tested the approaches
in 2 datasets: Our own Cardiac Aorta CT images and BRATS
2017 Brain Tumor Segmentation Challenge. Experimentally,
our methods surpass the baselines [3], [5], [7] by 4% in aorta
segmentation and 2% in BRATS 2017 segmentation challenge
[8].

II. RELATED WORKS

U-Net architecture was first introduced in [2] to tackle
the microscopic ISBI challenge and it has gained tremendous
success and popularity. Compared to other models proposed
for natural image segmentation, such as MaskRCNN [9]; U-
Net processes the image at different resolutions and feature
channels as well as employs contraction-expansion residual
connections. As a result, U-Net models are capable of rec-
ognizing complex micro features of medical images. Many
variants of U-Net were proposed to address other segmen-
tation problems. For example, V-Net [4] extends U-Net to
three dimensions to solve MRI prostate cancer segmentation.
AnatomyNet [7] also demonstrates effectiveness in MICCAI
head and neck segmentation challenge 2015. In addition, the
works in [3], [5] propose the use of residual connections [10]
and element-wise summation of multiple segmentation maps
from different resolutions. Their approaches have shown gains
in hand and brain MRI image segmentation and BRATS 2017



challenge [8]. As such, our models are based on the U-Net
networks proposed in [3], [5].

In terms of loss function, pixel-wise cross entropy was first
used with U-Net in [2]. It was also used in M-Net [11] to
solve MRI brain structure segmentation. However, since Dice
score [6] becomes a regular metric fot this task, there has been
many attempts to directly optimize this score by using Dice-
based loss functions. For instance, V-Net [4] uses a novel Dice
loss function while AnatomyNet [7] adopts a combination of
Dice and focal loss. The works in [3], [5] also propose the
use of Dice coefficient as the training objective function. In
this paper, we investigate a potential limitation of many Dice-
based loss functions proposed in such works (section III-B)
and introduce a simple solution called Stochastic Aggregated
Dice Coefficient (section III-C) to incorporate into our unified
U-Net models.

III. METHODS

A. Model Architecture

U-Net architecture comprises of two stages: contraction and
expansion. It is also divided into N convolutional levels. In
each level, there are multiple padded convolutional layers, a
down-sampler (using max-pooling or strided convolution) and
an up-sampler (using transpose convolution). During each level
of contraction stage, U-Net models usually halve the image
resolutions while double feature map channels. In expansion
stage, conversely, the models restore the original resolutions
and reduce the number of channels. In this paper, we adopt
and modify the U-Net model proposed by [3] as it computes
multi-level segmentation maps from the first three levels.

Not as [3], which use Jaccard index and for multiclass
extension, we seek to maximize, through gradient ascent, the
dice coefficient D between the predicted binary volume P and
ground truth volume G. Since the optimization is stochastic,
the overall loss is averaged across all examples in the batch of
size M . Formally, let pj,i ∈ Pj and gj,i ∈ Gj be the predicted
and ground truth voxels of the N -voxels image j in a batch of
size M respectively, where ∀p, g; p, g ∈ [0, 1]. The stochastic
dice coefficient D is defined as follow:
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For the case of multiclass segmentation (more than one
labels apart from the background), the dice coefficient is
defined in equation (2); where k ∈ K being the classes.

B. Gradient Flatness of Dice Coefficient in Extreme Condi-
tions

Neural networks learn by optimizing an objective function
through stochastic gradient descent/ascent algorithms. This
requires the gradients of such loss function to be smooth,
continuous and non-zero. In other words, the values of the

(a) Ground− truth = 0

(b) Ground− truth = 2000

Fig. 1: The contour of dice coefficient (vertical axis) when
ground-truth is zero (Fig. 1a) and 2000 / 5000 (Fig. 1b). The
2000 contour is smooth and continuous while the zero contour
is sharp, flat and discontinuous.

loss must be smooth, continuous and non-constant. However,
these characteristics of Dice loss in equation (1) vanishes when
it faces extreme conditions of no-target labels. This is formally
specified in equation (3) ; with pi, gi, N , D defined in section
III-A.
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Figure 1 also illustrates the problem. The contour of dice
coefficient maintains a smooth continuity when the target-label
amount is abundant, but becomes sharp and flat when the
target-label approach zero. Zero loss produces no gradients
to the model to update its parameters and causes the model
trapped in local optima, thus makes it difficult to learn the
data. We also found that the use of smooth Dice loss does
not help relieve the issue. The proposed stochastic aggregated
dice coefficient is designed to ease the impact of the problem.

C. Stochastic Aggregated Dice Coefficient

Instead of computing per-image dice coefficients and aver-
aging them for each batch, we propose a new loss function:
Stochastic Aggregated Dice Loss (SA Dice), which differs
from the original method. In this approach, all segmentation



outputs in a batch are merged into a large image and the dice
loss is computed based on the aggregated image. Formally,
let M , P , G respectively be the size of batch, the predicted
binary volume and the ground truth volume. Let pj,i ∈ Pj

and gj,i ∈ Gj be the predicted and ground truth voxels of
image j in batch M respectively, where p, g ∈ [0, 1]∀p, g. The
proposed loss function DSA is defined in equation (4):
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For the case of multiclass segmentation, the SA dice co-

efficient is defined in equation (5); where k ∈ K being the
classes.

The rationale behind this approach is that the no-target
examples are most likely to be accommodated with other
examples that have labels during training. This will cause the
aggregated dice coefficient contour smoother and curved due
to the labels from such images. Therefore, the gradient signals
will be noticeable and the model can be easily optimized.
We also find experimentally that gradient clipping [12] and
sometimes voxel-wise cross entropy loss beneficial.

D. Weighted Multi-resolution Loss Component Accumulation
(WMLA)

Existing U-net frameworks compute the training loss be-
tween high-resolution ground-truths and the segmentation out-
put of top level layer. In this section, we introduce Weighted
Multi-resolution Loss Component Accumulation (WMLA)
method, which computes loss components at different res-
olutions. The per-resolution component is calculated from
segmentation output of each level and its respective down-
sampled ground-truths. For example, suppose the output at
level 2 is 32 ∗ 32 ∗ 32, the ground-truth is down-sampled
to resolution 32 ∗ 32 ∗ 32 and dice coefficient component
is computed at the level 2. The total loss of the model is
the weighted sum of such loss components. This approach is
illustrated in figure 2.

Formally, let Pk, Gk and αkbe the predicted and ground
truth image and per-resolution loss coefficient at level (resolu-
tion) k. The Loss(P,Q) be the selected dice coefficient loss
function. This can be equations (1), (4) or other loss function.
The total multi-resolution loss is defined as in equation (6):

Dmulti−res =
∑
k

αkLoss(Pk, Gk) (6)

In our experiments, the coefficient αk remains as a hyper-
parameter or a trainable parameter, but α1 is kept constant at
unity. Empirically, we found it beneficial to choose diminish-
ing coefficients for lower levels or to use trainable parameter.
In particular, we set α = (1, 0.1, 0.01) for the first, second
and third levels. Using trainable αk also produces performance
gain.

Fig. 2: The proposed U-Net architecture. It has additional loss
components at multiple resolutions.

IV. EXPERIMENTS

A. Setup

Similarly to [3], Our trained U-Net models, apart from the
proposed changes, use 4 levels of contractions and expansions;
16 feature channels in the first level and the amount doubles
when the resolutions are halved. We use Instance Normal-
ization [13], Leaky ReLu activation and residual connections
[10]. We used Adam optimizer [14] with learning rate 5e−4
and trained for 300 epochs. In addition, we halved the learning
rate when the validation loss no longer decreases. Due to
memory limits, only batch size of 2 is used so that SA Dice
approach can work properly. Finally, we trained our models
with an Nvidia GTX 1080 Ti graphic card.

B. Datasets

Aorta is the largest artery in the human body, originated
from the left ventricle. Successful aorta segmentation is es-
sential for automatic and accurate discrimination of various
vascular organs, such as the heart or coronary arteries. Our
own aorta segmentation dataset contains 3D CT Coronary
Angiography (CTCA) scans of the aorta from 50 patients. The
3D images are rescaled to 128∗128∗128 resolution. They are
split into training set and validation set by 90% and 10% ratios
respectively. We performed several rounds of cross-validation
and average the validation performance between all trials.

On the other hand, the Brain Tumor Segmentation dataset
(BRATS 2017) [8] consists of 274 3D images with brain
tumors. Similarly, such images are resized to 128 ∗ 128 ∗ 128
resolution. They are also split into training set and validation
set by 90% (246 samples) and 10% (28) ratios respectively.
Similarly, cross validation is also performed on this dataset.

C. Results

1) Cardiac Aorta Segmentation: Table I shows experimen-
tal results for the aorta segmentation. As it can be seen, The U-
Net model using SA Dice loss function achieves 0.9 dice score,
exceeding the baseline score of 0.875 by 0.025 Dice points.
It shows the effectiveness of the method. SA Dice improves
the gradient signatures of examples with scarce target-label,
reducing the amount of false-positives in such images. It also



(a) Cardiac Aorta (b) BRATS Brain Tumor

Fig. 3: Cardiac aorta image and BRATS 2017 brain tumor
sample.

TABLE I: Cross-validated results for Cardiac Aorta segmen-
tation task.

Model WMLA α Dice
U-net (baseline) [3] N.A 0.873

AnatomyNet [7] N.A 0.874
SA Dice N.A 0.900

SA Dice + WMLA α = (1, 1, 1) 0.908
SA Dice + WMLA α = (1, 0.1, 0.01) 0.915
SA Dice + WMLA Trainable α 0.909

acts as an augmentation technique as it dynamically groups
multiple combinations of training images. We also found
that L2-norm gradient clipping of 5.0 or 3.0 beneficial in
our experiments. In addition, the proposed weighted multi-
resolution loss component accumulation (WMLA) also offers
improvements compared to the baseline. This approach, when
combined with SA Dice, achieves up to 0.915 dice score (0.04
points higher than the baseline). The results suggest that using
diminishing α is crucial for the performance gain. This is
justifiable because lower-level segmentation maps have low
resolutions and are often less accurate and detailed. On the
other hand, it focuses more on the overall loss at the object
level.

2) BRATS 2017 Brain Tumor Segmentation: Experimental
results for Brain Tumor segmentation task (BRATS 2017) [8]
are shown in table II. Unlike the results for aorta dataset, only
using SA Dice does not produce any noticeable performance
gain while incorporating weighted multi-resolution loss com-
ponent accumulation (WMLA) (section III-D) contributes to
some improvements. To be more precise, a combination of
multi-resolution losses with diminishing α factors, gradient

TABLE II: Cross-validated results for BRATS 2017 Brain
Tumor segmentation task.

Model WMLA α Dice
Whole Core Enhanced

U-net (baseline) [3] N.A 0.890 0.770 0.732
AnatomyNet [7] N.A 0.896 0.780 0.73

SA Dice N.A 0.894 0.774 0.739
SA Dice + WMLA α = (1, 1, 1) 0.907 0.790 0.747
SA Dice + WMLA α = (1, 0.1, 0.01) 0.905 0.790 0.754
SA Dice + WMLA Trainable α 0.902 0.793 0.750

clipping and voxel-wise cross entropy components reports a
performance of 0.905 dice for whole tumor, 0.79 for core
tumor and 0.754 for enhanced tumor segmentation benchmark.
Compared to the baseline, this shows 0.015, 0.02 and 0.022
performance gains respectively.

V. CONCLUSIONS

In this paper, we investigated the limitation of existing
Dice-based loss functions in extreme cases of medical im-
age segmentation. We presented two methods to tackle the
issue: Stochastic Aggregated Dice Coefficient (SA Dice) and
Weighted Multi-resolution Loss Component Accumulation
(WMLA). Our experiments show improvements of 4% and
2% for the cardiac aorta from CTCA and BRATS 2017 brain
tumor segmentation from MRI compared to the baselines U-
Net [3] and AnatomyNet [7].
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